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ABSTRACT 

THEOREM: Let A be a finite Kin-free graph, P l , . . .  ,P~ partial isomor- 
phisms on A. Then there exists a finite extension B, which is also a 
Kin-free graph, and automorphisms fi of B extending the Pi- 

A paper by Hodges, Hodkinson, Lascar and Shelah shows how this 
theorem can be used to prove the small index property for the generic 
countable graph of this class. The same method also works for a 
certain class of continuum many non-isomorphic w-categorical countable 
digraphs and more generally for structures in an arbitrary finite rela- 
tional language, which are built in a similar fashion. Hrushovski proved 
this theorem for the class of all finite graphs [Hr]; the proof presented 
here stems from his proof. 

1. I n t r o d u c t i o n  

We say a class ~ of s t ruc tures  has  the  e x t e n s i o n  p r o p e r t y  for pa r t i a l  isomor-  

phisms,  (EP)  for short ,  if for every finite s t ruc tu re  A E s and  P I , - . . ,  Pn pa r t i a l  

i somorph i sms  on A, there  exists  a finite s t ruc ture  B E ~  and  f l , . . . ,  fn  G A u t ( B )  

such t h a t  f i  ex tends  Pi. The  ma in  poin ts  are: We want  to  s tay  in the  rea lm of 

f inite s t ruc tures ,  so B has to  be  finite; we want  to s tay  inside the  class ~;  we 
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want to solve the extension problem simultaneously in one extending structure 

for finitely many partial isomorphisms. 

The question "does the (EP) hold for graphs" arose in work by Hodges, 

Hodkinson, Lascar and Shelah on the small index property for the random graph 

[HHLS]. They realized that this question (EP) is important to understand the 

automorphism group of the random graph as a topological group. More pre- 

cisely: The extension property for graphs just shows that most of the n-tuples of 

automorphisms of the random graph (in the sense of Baire Category) are locally 

finite. See also Section 5 for this relationship. We want to extend these results 

to more classes of structures. 

In Section 4 of this paper we will consider classes N of relational irreflexive 

structures, which are definable by axioms of a certain type, namely axioms of the 

type "every structure in t~ weakly avoids T" (where T is a "packed" S-structure; 

by a packed structure we mean a structure T such that for every a, b E T ,  if a ~ b 

then there exists an atomic formula R a l  " . .  a,~ which holds and in which a and b 

are appearing) and axioms of the type "if a l , . . . ,  am E A E t~ are elements which 

are linked (i.e. R a l  . . .  am holds for some R in the language), then the quantifier- 

free formula ~ ( a l , . . . ,  am) holds". We will show that if a class has such an axiom 

system, then the (EP) holds for N. From this it follows with the same proof as in 

[HHLS] that  the automorphism group of the generic countable structure of this 

class - -which  exists in this case- -  has the small index property. 

There are two examples of such classes we want to mention: 

1. The Kin-free graphs, where m C w and K m is the complete graph with m 

edges. 

2. Certain classes of digraphs, which are defined in a similar way by omitting 

a given (possibly infinite) set of tournaments. 

This second example is due to Henson, who introduced these digraphs to con- 

struct continuum many non-isomorphic countable w-categorical digraphs ([Hen]). 

The results in this paper will show that all the automorphism groups of these 

digraphs have the small index property. In [Hg] we have already treated the 

K3-free case. Also we introduced the technique of permorphisms, which we are 

also going to use in the present paper. We will need a general extension lemma 

for permorphisms, which we prove in Section 2. This lemma is nearly already 

proved in [Hg], but unfortunately not in the generality which is needed here. 

Furthermore we need a special feature of this extension, which we did not prove 

there. It might be a good strategy to start reading SeCtion 3 before reading Sec- 

tion 2, because there is a more detailed description of the ideas of the proofs; in 
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particular the notion of permorphisms is motivated there. 

In Section 3 we will prove the extension property for Example 1. In Section 4 

we will handle the general case. We have chosen to go this way rather than to first 

prove the general case, because we think that  the proof in the general case without 

an understanding of the simpler case is quite hard to follow. Also Section 3 is 

meant for the reader who is not interested in arbitrary relational structures, but 

only in graphs, and who might want to skip the proof in Section 4. For technical 

reasons we restrict attention to irreflexive structures in Section 4. 

In a joint paper with Daniel Lascar [HL] there will be treated a weaker variant 

of the (EP): a class ~q has the weak  ex t ens ion  p r o p e r t y  for partial isomor- 

phisms (WEP), if whenever for A , p l , . . . ,  Pn there exists a possibly infinite solu- 

tion M, g l , . . . ,  gn, then there exists also a finite solution B, f l , . . . ,  fn (A, B, M 

structures in ~q; a solution is a structure in ,q together with an n-tuple of an- 

tomorphisms extending the given partial isomorphisms). There the (WEP) for 

several classes will be proved and a connection between this property and results 

on the free groups in finitely many generators considered as topological groups 

will be developed. In the cases we consider in this paper the (EP) and the (WEP) 

are equivalent, because there it is easy to give an infinite solution. 

In Section 5 we will explain the connection between the (EP) for a class .q and 

properties of the automorphism group of the generic countable structure in ,q, 

considered as a topological group. This relationship has already been explained 

in [HHLS]; we will only add a few remarks due to the slightly different situation. 

In Section 6 we are discussing some of the preconditions under which the 

general theorem was proved in Section 4. In particular we extend the theorem 

to structures which are not irreflexive. 

Apart from the two areas already mentioned (the Small Index Property and 

topological properties of free groups) there are other fields in which various 

extension results for partial isomorphisms are used. Let me mention infinite 

combinatorics (see [GGK]), finite model theory (see [Gr]) and cylindric algebras 

(see [AHN]). Notably in the last field one uses a strong result on extending partial 

isomorphisms. 

ACKNOWLEDGEMENT: I would like to thank Daniel Lascar and Elisabeth 

Bouscaren, who patiently listened to older and more complicated versions of 

this proof and who gave helpful suggestions on how to make it easier. I also 

would like to thank Dugald Macpherson and Ian Hodkinson for helpful remarks. 

Notation: By A C B we denote inclusion (and not proper inclusion). If p is a 

partial function on a set A, then D(p) will denote the domain of p, and by R(p) 
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the range of p (so D(p) C A and R(p)  C A).  If p and S are functions we write 

p C S for f extends p, i.e. 0(2) C D ( f )  and for aCD(p):  a p = a 1. By a pa r t i a l  

m a p p i n g  we will always mean an injective partial function. If ~ is a tuple, say 

= al -" . a t  and D is a set, we write 5 ~ D  for a l ~ D  and . . .  and a~ED,  and if 

5 E D ( p )  we denote by 5P the tuple a~ , . . . ,  a p. The cardinality of a set D will be 

denoted by #D. Throughout the paper P l , . . . , P~  will be partial mappings and 

D~ := D(pi) and D~ := R(pi) ,  so Pi maps Di bijectively to D~. 

2. T h e  pla in  l e m m a  for p e r m o r p h i s m s  

In this section we are working in the class of all finite S-structures, for a 

finite relational language S. "Plain lemma" is just meant to mean: no further 

restrictions on the S-structures; it is the basic step. 

Det~nition: Let S be a relational language. Let X be a permutation of the 

symbols in S mapping every symbol to a symbol with the same arity. Let A be 

an S-structure and p be a partial mapping on A. We call p a x - p e r m o r p h i s m ,  

if for every r Ew and every r-ary relation R in S and every a l , . . .  ,a f  E D(p): 
Ral  " " a t  r RXaP...aP~. 

LEMMA 1: Let  S be a tinite relational language, let X1, . . . , Xn be permuta t ions  

o f  the language mapping  every symbol  to a symbol  o f  the same arity. Le t  A 

be a tinite S-structure.  Let  P l , . . .  ,pn be partial mappings  on A, such that  Pi 

is a Xi-permorphism.  Then  there exists a finite S-structure B ,  A C B ,  and 

f l , . - . ,  fn ESym(B) such that  each fi  is a x c p e r m o r p h i s m  and such that  Pi C f i .  

We  can choose B to satisfy in addition: 

1. V b ~ B 3 f e ( f l , . . .  , f , ) :  bf  EA,  

2. for every R r-ary in S for all b l , . . . ,  br E B f f  Rbl  . . .  br then there exists 

Se(fl,... , f , )  such that  for 1 < i < r, b { E A ,  

3. I f  the  max imal  arity o f  S is bigger than 1 then: whenever  there is given 

f E ( f l , . - - , f~ )  and a,b E A such that  a I = b then there exists t E w 

Pil , . . . , Pi, E {pl,  . . . , pn } and e l , . . . ,  et ~{ -1 ,  1} such that  a p', ""P', = b and 

( f l , . . . ,  fn) is the subgroup of Sym(B) generated by f l , . . . ,  S~. Conditions 1 

and 2 just mean that  B only contains the structure which is necessary. These 

conditions are easy to achieve even if B would not have them to begin with: 

One first replaces B by the substructure {a ! I a e A, f E ( f l , .  . . , fn)  } and then 
one cuts down the interpretation of a relation symbol R to all the tuples of the 

form J ,  where ~ E A and f e ~f l , . . . ,  f~) and Rfi holds (in A). In Condition 3 
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P~: "'" P'i: means the concatenation of partial mappings. In the case t = 0 this 

empty concatenation of partial isomorphisms is defined to be the identity on A. 

The condition means: a and b in the original structure A are only mapped to each 

other via f inside B if this is necessary given the information of the Pi. We will 

have this condition automatically at the end. The precondition on the maximal 

arity in 3 is just included to make the proof easier. We are not interested in the 

case of just unary relation symbols. 

Proof: The proof is by induction on the maximal arity of relation symbols in S. 

The case of this arity being 1 is easy and is already treated in [Hg]. 

Let the maximal arity be s, s >- 2. Let S~ be the set of relation symbols in S 

of arity s. 

Det~nition: 

1. A A - t y p e  over A is a collection of formulae of the form Rxa, where R E S  

and aEA. I f C  D A and cEC then by A- tp(c/A) we denote the collection of 

all the formulae of form Rxa which hold for c in C. Note that  the meaning 

of "A-tp(c /A)"  will be different in the different chapters. 

2. If p is a A-type over A and A0 C A C C and c E C, then 

PIAo :=- {Rx~ E p I ~ E A0} and A-tp(c/Ao) := A-tp(c/A) IAo = 
{Rag ] aeA0,  Rca holds}. 

3. If ~ is a formula of the form Rxg with g 6 Di, then qo w := RX'xgP~; note 

that  ~o p~ does not only depend on Pi but also on )ti. 

4. If p is a A-type over Di then pP' := { ~ '  [ ~o E p} is a A-type over D~. 

It is the type p transported by the permorphism Pi, (remember Di = 

D(pd, = R(pd). 

CLAIM: There exists a finite S-structure C, A C C such that 

(a) there exists a constant Co such that for every A-type p over A: 

# { c 6 C  I A-tp(c/A) = p} = Co, 

(b) there exists bijections h i , . . .  ,h,, E Sym(C), hi D Pi such that for every 

gEDi ,  bEC, RES: Rbg r Rx~bh'g p'. 

Proof: (a) For a A-type p over A we let cr :=- #{c 6 A [ A- tp(c/A) = p} and 

Co := max{% ] p A-type over A}. Now for every A-type p over A we add (Co -c r  

many new points c with A- tp(c/A) = p. Note that  we do not consider instances 

of the relations between these new points; for a clear picture we can suppose that 

every new instance of a relation involves exactly one new point (and some old 

points from A). 
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(b) Fix i (1 _< i < n). Note that the statement of (b) just says that if 

A-tp(b/Di)  = p, then A-tp(bh'/D~) = pP'. Let p be a A-type over Di and 

p' := if',. 
The key for the proof of 2 is the following observation: there are as many 

possibilities to extend the type p to a type over A as there are to extend p'. 

More precisely, if we denote Q(p) = {q } q A-type over A, q [D~ = P} and likewise 

Q(P') = {q I q A-type over A, q [D~ = P'} then #Q(p) = #Q(p'): 

For any Ao C A let F(Ao) = { R x ~ I R E  S,g E A0}. Obviously #F(D~) = 

#F(D~), so #(F(A)  - F(Di))  = #(F(A)  - F(D~)). The elements of F(A) - F(Di)  

are the formulae we might add to p without changing the type over Di: Q(p) = 

{p U r I r C (F(A) - F(Di))}.  
So #Q(p) = 2 #(F(A)-F(D')) and likewise #Q(p') = 2 #(F(A)-F(D~)) = #Q(p). 

Now we prove the crucial equality 

# ( { c e C  I A- tp(c/Di) = p}) = # ({cEC I A-tp(c/D~) = pP' }):  

# ( { c E C  I A- tp(c /Di )  = p}) = E # ({cEC I A-tp(c /A)  = q}) = co. #Q(p) 
qeQ(p) 

and likewise 

# ({cEC I A-tp(c/D~) = p'}) = Co. #Q(p') = Co" #Q(p). 

Now we can choose hi to map every set { c E C ]  A- tp(c /Di )  = p} bijectively to 

{cE C I A-tp(c/D~) = pP'}; furthermore we can choose hi to extend Pi because 

if a EDi and a E {cEC I A- tp (c /Di )  = p}, then a p' E {cEC I A-tp(c/D~) = loP,}. 

We introduce the language S' := (S - Ss) U {Re I cEC, RESs} ,  where the Rc 

are new (s - 1)-ary relation symbols. We consider A as an S'-structure (and call 

it A') by defining 

A' ~ Rc~ ~ '~ C ~ Rca. 

The maximal arity in S' is (s - 1). If we define X~ on {Re ]cEC,  R E S s }  by 
t I 

R~' :-- (RX')ch, (and for R E S -  Ss by R x, := RX'), then Pi is a X~-permorphism 

on A'. So we get by induction a finite S'-structure F,  A ~ C F and ~ 1 , . . . ,  ~o,~ E 

Sym(F),  ~i D Pi, ~i a X~-permorphism. We will not need the extra properties 

for F mentioned in the lemma. 

Now we let F c Sym(S) • Sym(F) • Sym(C) be the subgroup generated by the 

elements "Yi := (Xi, ~i, hi). As a convention the components of an element 7 E F 

will always be called X, ~ and h, i.e. 3' = (X, ~, h). F operates on S (by R 7 := RX), 

on F (by d ~ := d~), on C (by c 7 := ch), and on S' (by (Re) 7 := ( n x ) ~ ) .  But 
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we have to be careful with this notation, because for a ~ A ,  a7 might mean a h or 

a ~, which might be different; we will only apply the notation to relation symbols. 

For 7 = (X, ~o, h) e F we have that  ~ is a "~-permorphism on F (of course only 

with respect to relation symbols in S~). This is true for the generators of F and 

it extends to the whole group. 

On A • F we define the equivalence relation - to be the symmetric, reflexive 

and transitive closure of 

E = {((aP~,~/) ,(a,~/iT))l l  <- i < - n , a ~ O i , T e r } .  

We note some basic facts: 

(1) If (a, (X, ~, h))= (a*, (X*, ~*, h*)) then a ~ = (a*) ~* and a h = ( a * )  h• . 

(2) If R E S U  S'  is r-ary and (al ,~,)-(a~,7*) a n d . . ,  and (a~,7)--(a*,7*) then 

R'Y-lal  " " a t  ~ R('~*)-la~ "." a*. 

Proof: 

(1) It suffices to prove (1) in the cases ((a, (X, ~, h)), (a*, (X*, ~*, h*))) e E,  

(a*) p~ = a and (X*, ~*, h*) = (Xi, ~i, hi) . (X,  ~o, h). But then a ~ = (a*) m~ = 
(a*) ~~ = (a*) ~* and a h = (a*) mh = (a*) h'.  

(2) Let " / =  (X, ~, h) and 7" = (X*, ~*, h*), so ~ is a 7-permorphism and ~* is 

a ~*-permorphism (on the S~-structure F).  

CASE Sl: We consider Aq We have for R E S~: R T - ~ a l . . . a ~  r 

R a ~ . . . a ~  r R(a~) ~* . . .  (a~.) ~" ~ R(7*)-~a~ . . .  a*. For the middle equiva- 

lence we used (1). 

CASE S: Let R e S ~  (otherwise it follows from the previous case). 
--1 

R X - l a l " ' a s  ~ (R  x ) a l a 2 " " a s  ~ Ra~a~'"a~s 

r R(~)~* (a~) ~* .-. (a*) ~* r R(X*)-la~ . . .  a*. Here we are using that  ~ is 

a 7-permorphism for S' and that  ( (Rn-~)~)  7 = R ~  and similarly with the *. 

Now we are ready to define an S-structure on A • F/_=: 

For e l , . . .  , e ~ E A  • F / -  and R E S  we define: 

R e ~ . . .  e~ < :- H')'~ r ~ a ~ , . . . ,  ar ~ A(ei  ---- (hi, " t ) / -  and R ~-~ a~ . . .  a~). 

We note that  

(3) R~(a l , ,7 ) l= ' . "  (ar ,7) l  = ~ R a l . . . a r .  
(4) If (a ,~l)= (b,~2), then there exists t 6 w, P i , , . . .  ,Pi~ 6 {Pl , . . .  ,Pn} and 

e l  ,.. e t  6t 

q , . . .  , e r e { - 1 , 1 }  such that  bP'l P', = a and ~/2 = ~/~: "" "3'h ~/1. 

(3) follows directly from (2) and it suffices to prove (4) in the case (a, ~/1)E(b, ~2) 

and a = b m, "Y2 = ~i~1, where it is obvious. In fact in (4) also the reverse 
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implication holds, so (4) just gives a description of the reflexive, symmetric and 

transitive closure of E. 

We define a map i: A -+ A • F / -  by i(a) := (a, 1 ) / -  (where 1 is the unit 

element in the group), i is injective: if (a, 1)_= (b, 1) then, by (1), a = b. By (3), i 

is an embedding of A into A • F /=  as S-structures. By identifying we suppose 

A c A •  and we s e t B = A •  

We define the permorphism f~ (for 1 _< i _< n) by ((a, 9')/-)Y' := (a, 77 i ) /= .  f~ 

is well defined; f i  is an Xi-permorphism, because of fact (3); for 1 < i < n we have 

Pi C fi ,  because if a p' = b then ((a, 1)/-)Y'  = (a, 7 i ) / -  = (a p', 1 ) / -  = (b, 1) /=.  

Properties 1 and 2 are easy; for the additional property 3 suppose ((a, 1 ) / -  )f = 

(b, 1)/_=, where f C ( f t , . . . ,  f~). Take 7 E F such that for all d E A and 7' e 

F ((d, 7 ' ) /=  )f  = (d,7'7)/_--. Then (b, 1)= (a,7) and by fact (4) there exists 
e l  ~t 

P i t , . . . , P i ,  E { P l , . . . , P , }  and e l , . . . , e t  E { -1 ,1}  such that aP*,"'P'* = b and 

7 = 7i~ 1"'" 7i~ *. So f = f~7 "'" f~7 as desired. | 

The size of the structure B constructed in this proof is very large in terms 

of the given data. Therefore we did not try hard to be a little more eco- 

nomical in our construction of the structure B. But nevertheless we want to 

give an upper bound for the size of B. This bound is an iterated exponential 

function. We denote by itexp(r, .) the r times iterated exponential function on 

natural numbers, which has the following inductive definition: itexp(0, s) : -  s; 

i texp(r  + 1, s) : =  2 itexp(r's). Let us suppose the maximal arity of relation symbols 

in S is r > 2 and that S contains lj many symbols of arity j (for 1 < j < r). Let 

p(x)  = 11 + 12x + " .  + / r - t x  r-2 + 2/rx r-1. 

CLAIM: I f  we suppose the structure A is of  cardinality c, then for the structure 

B constructed in the p r o o f o f L e m m a  1 we have # B  _<itexp(2r - 1,p(c)). 

The proof of this claim is fairly routine but a little bit tedious. We will only 

sketch the proof. To start one has to compute that in the unary case one can 

find a structure B of size c- 2 tl . Then the proof is by induction on r. We assume 

r -> 3 (the case r = 2 being similar). The number of A-types over A equals 

t = 2 v(c)-t~c(~-') . The cardinality of C constructed at the beginning of the proof 

can be bounded by ct. The number of new (r - 1)-ary predicates in the new 

language S I is bounded by l~ �9 c- t. By induction we find a structure F of size 

bounded by itexp(2r - 3,11 + - . .  + / r - 2  cr-a + 2/r-lC r-2 + 21rcr--lt). For Sym(F)  

we are using the bound 2 l~ We obtain a bound for A x F by multiplying 

c and a bound for the number of arity preserving permutations of S and a bound 

for Sym(C) and for Sym(F).  As the other numbers are fairly small compared to 
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Sym(F),  you can easily obtain the bound i t exp (2 r -  1,p(c)) for this number (the 

additional t e rm/~c  *-1 is just meant to swallow all these smaller numbers). As 

B = A x F /=  the above bound also holds for B. 

3. T h e  case  o f  t h e  g r a p h s  

Definition: In this paper graphs are undirected and loop free and R denotes the 

edge relation. 

A graph A is called Kin-free (for mEw),  if Kin, which is the complete graph 

with m vertices, is not embeddable into A, i.e. there do not exist a l , . . . ,  a,~ E A 

such that  akRaz (for 1 < k < l < m). 

THEOREM 2: Let m, n > 1, 1etA be a finite Km-free graph. Let p l , . . . , pn  be 

partial isomorphisms on A. There exists a finite Kin-free graph B, B D A, and 

f l , - - . ,  f ,~EAut(B), such that fi D Pi. 

Before going through the formal proof, which looks a little bit technical, let us 

describe the main ideas of the proof: 

The proof in the general case will be by induction on m. Let us introduce for 

every aE A a new colour (i.e. a unary predicate) U~ such that if bE A then b is 

of colour U~ iff bRa. Now A is K,~-free if and only if you cannot embed K,~_I 

"uni-coloured" into A; the latter means there does not exist a colour U~ and 

elements a l , . . .  ,am-1 in A such that akRal (1 < k < l < m) and all the ai are of 

colour Ua. Thus one can reduce Km-freeness conditions to certain Km_l-freeness 

conditions, if one works with coloured graphs. Here are the main problems which 

one has to overcome doing this reduction. 

1. With respect to the colours, pi is no longer a partial isomorphism, but it 

is a permorphism, i.e. it respects the colours only up to a permutation X~ 

of the colours ((Ua) x' = U,~, ). 

2. Xi is not yet really a permutation of the set of eolours {U~ I aEA},  but 

it is only a partial function. As in [Hg] one overcomes this problem by 

doing a type-realizing step to get a nice graph C D A; afterwards one 

looks at the colours {Ud [ dEC} and extends the partially already defined 

functions Xi to permutations of this set. 

3. If one extends the graph A considered as a (uni-coloured Km_l)-free graph 

to a (uni-coloured K,~_l)-free graph B and the Pi to fi, how can one ensure 

that  B is Kin-free? Take into account that B is {Ua ] dEC}-coloured, so 
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we don't  have for every bEB a colour Ub such that all neighbours of b have 

colour Ub. This problem disappears by a miracle: The resulting graph B 

looks locally like A. In particular, for every a E A the neighbours of a in 

B will still all have colour Ua. Now any orbit of the automorphism group 

of B (as graph) will have an element inside A. So to check Km-freeness 

of B, one has only to look for copies of Km having one element a inside 

A, but such a copy would lead to a copy of Kin-1 of colour Ua. 

. To get a proper induction, one has to prove the theorem for coloured 

graphs and permorphisms. Starting with a coloured graph, we have to 

introduce a new set of colours {Ud ] d E C}. But (uni-coloured Km)" 
freeness does not exactly mean (uni-coloured/i'm-1)-freeness with respect 

to the new colours. It means precisely: there do not exist an old colour 

U, some a of colour U, a new colour Ua and a U~-coloured copy of Kin-1 
which is at the same time U-coloured. We will call such a combination 

(U, Ua) a critical colouring, and we have to avoid copies of Km-1 which 

are critical coloured. This last problem and the notational complication 

arising from the fact that we are dealing with permorphisms rather than 

isomorphisms will make the proof look rather technical. 

The definitions which follow, and the version of the theorem (i.e. Lemma 3), 

which will be provable by induction, should now be sufficiently motivated. 

Detinition: Let 111,..., 11~ be a family of disjoint finite sets of unary predicates 

(called colours) .  Let 11 := U1 _< j -< r 11j' If A is an {R} U 11-structure and aEA, 
V E 11, then we write a E V or Va to indicate that the unary predicate V (or 

rather its interpretation in A) is true for a; we also write "a is of colour V". 

1. A H-graph  is an {R} U 11-structure A such that  A considered as an {R}- 

structure is a graph. 

For aEA we define 11(a) := {VEIl  I aEV}. 

. Let 11c C 111 • . . .  • 11r. We will call 11c the set of critical colourings. 
We say that  A is 11c-Kr~-free (for mew) ,  if there do not exist a colouring 

(V1,.. �9 Vr) E11c and elements a l , . . . ,  am E A, such that akRat (for 1 < k < 

l_<m) andakEVj  ( f o r l < k < m , l < j < r ) .  

The next lemma is the permorphism version of Theorem 2. This is the version 

we are able to prove by induction on m. 
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LEMMA 3: Let m _> 1. Let s be disjoint sets of colours (where r > 0). 

Let 52 := Ul  < j <r52 j. Let x~ ESym(523 ) (for l < i < n , l  < j <- r), S :=52U{R} 

X~ :-- U0 <_ j < r ~ c Sym(S), where X ~ is the identity on {R}. Furthermore let 

52c c 52 1 • . . .  x 52r be a set called critical colourings. Suppose 52~ is xi-invariant 

(for 1 <- i <- n). 

Let A be a /~nite 52c-Kin-free 52-graph and suppose P l , . . .  ,Pn are partial 

mappings on A such that Pi is a X~-permorphism. 

Then there exist a t]nite 52-graph B, B D A, B 52:Kin-free, f l , . . . ,  fn E 

Sym(B), fi D Pi, f/ a X~-permorphism (for 1 <_ i < n). 

B can be chosen to satisfy in addition: 

1. V b e B 3 f e ( f l , . . .  ,f~>: bSeA,  

2. for all a, bCB if  aRb then there exists f E ( f l , . . .  ,f,~/ with aS,bf c A ,  

3. whenever there exists f e ( f l , . - . ,  fn> and a,b E A such that a I = b then 

there exists f e w  P{l , . . .  ,P~ E{pl , . . .  ,Pn} and e l , . . .  , e tC{-1 ,  1} such that 
e l  �9 t 

aP'l "P'~ = b and f::l ... f~? __ f. 

From the lemma follows the theorem: 

Let r = 0, which means we just talk about (uncoloured) graphs. 521 x -..  x Kr 

just contains the empty tuple A and we let 52c = {A}; then 52:Km-freeness just 

means Km-freeness. Now Xi is the identity on {R} and Xi-permorphism just 

means isomorphism of graphs. 

Proof of the /emma:  The proof goes by induction on m. Let us first treat the 

case m = 1. 

By Lemma 1 there exists B D A, B a 52-graph, and f l , - . . ,  f,~ EAut(B),  Pi C f~, 
fi a Xi-permorphism, having all the extra properties we want for B (use property 

2 to check that  B is really a graph, i.e. R is irreflexive and symmetric). We have 

to check that  B is 52:Kl-free. Suppose there exists b E B and (V1,. . . ,  Vr)E52c, 

such that  b c V j  (1 < j <  r). Choose f E  ( f l , . . . , f n )  such that  b: E A  and 

choose X C (X1,..., X,~) such that  f is a x-permorphism. It follows that  b f E 

A, (VlX,..., V x)  E52~, b: E Vj x. This contradicts the l l :Kl-freeness  of A. 

Now we do the step of induction m --+ m + 1 (m > 1): 

We have the set of colours 521 ...,52~ and we suppose A to be 52c-Kin+l-free. 

By a type-realizing step and by introducing new colours we want to consider A as 

satisfying a certain Km-freeness condition and then we want to apply the lemma 

for m. 

A subset A0 C A and a colouring 520 C 52 determine a type over A in this 

context, namely the type {xRa  ] a E A0} U { V x  I Y E 52o} (see the following 

definition). But not all of the types are realizable in 52:Kin+l-free graphs. 
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Definition: Let A C C be g-graphs, p will denote a A-type over A, c an element 

of C. 

1. A A-type over A is a collection of formulae of the form Vx (where V E tl) 

and of the form xRa (where aEA). We let 

A-tp(c/A) := {Vx IV  ~ Vc} U {xRa ] aEA, C ~ cRa} 

and 

the parameters of p, and 

the colours of p. 

Par(p) := {aEAixRaEp} ,  

g(p) := {Vegl Vxep}, 

2. We say c ~ p, if for every formula ~(x) Ep we have ~(c). Note the difference 

between A- tp(c/A) = p and c ~ p: c ~ p if[ A- tp(c/A) D p. 
3. We call a A-type p over A real izable ,  if there do not exist (V1, . . . ,  Vr) E 

tlc M (g(p))r and elements a l , . . . ,  am EPar(p) such that akRaL (for 1 < k < l < m) 

and ak E Vj (for 1 < k < m, 1 < j < r). The intended meaning is: p is realizable if 

one can realize it in a tic-Kin+l-free graph. 

Here are facts about realizability: 

(1) I f p  C q and q is realizable, then so is p. 

(2) If C D A (C a g-graph) is He-Kin+l-free, then for every cEC, A-tp(c/A) 
is realizable. In particular, for every aEA, A-tp(a/A) is realizable. 

(3) If p is a A-type over A and Par(p) C Di for some i with 1 < i < n then we 

can define pV, :_  {yx,  x [ YxEp} U {xRa p  ̀ [ xRaEp} and we have: 

p is realizable 4---7 pP* is realizable. 

All these facts follow directly from the definition of realizability. For (3) one 

has to use in addition, that  IJ~ is x~-invariant. 

Now we do the type-realizing step: 

CLAIM: 

(a) There exists a g~-Km+l-free g-graph C D A and for every t(O < t <_ #A) a 
constant cr such that for every A-type p over A: 

c# P,r(p) if p is realizable, 
# ( c E C  [ c ~ p,g(c) = g(p)} = 0 otherwise. 
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(b) There exist bijections h i , . . .  ,hn �9 Sym(C), hi D Pi such that for every 

V E i l ,  for every bEC,  for every i (1 < i < n): b � 9  r b hi � 9  x~ and for 

every a � 9  b �9  aRb r aP~Rb h~. 

Proof of (a): Let T = #A. We construct graphs A = CT C CT-1 C . . .  C Co = 

C and constants CT,. . . ,  CO such that  for every t (T > t >- 0) and for every A-type 

p over A with #Par(p)  >_ t: 

#{eeCt I e ~ p,11(c) = t1(t9)} = e#par (p  ) i f p  is r e a l i z ab l e  

and such that  Ct is 11cKm+l-free. We let CT = O. 

If cr, Cr are already constructed (for T >- r > t) and t > 1 then we will con- 

struct Ct-1 by adding points which have exactly t - 1 neighbours, all of them 

in A: For p a realizable A-type over A with # Par(p) = t - 1 we define ap = 

#{c E Ct I c ~ p,11(c) = 11(p)} and we define ct-1 to be the maximum of all 

these %. Now to get Ct-1 we add for every realizable p (with # Par(p) = t - 1) 

ct-1 - Cp many points having exactly type p (by this we mean points c such 

that  A- tp(e/A) -- p; note that  all the neighbours of e are in A). Now Ct-1 is a 

11-graph and ~lc-Km+l-free and for every A-type p over A (with t - 1 < # Par(p)): 

#{C E Ct-1 I C ~ p, il(c) = 11(p)} = e#par(p ) if p is realizable. This is true, 

because if Par(p) > t we did not change the set in question (by going from Ct 

to Ct-1) and if #Par (p )  = t - 1 then #{c �9 Ct-1 ] c ~ p,11(c) = 11(p)} = 

#{eec  I c p ,U(c)  = 11(p)} + (e -i - ep) = cp + c -1 - = e -l. 

Proof  of (b): This is similar to the proof of (b) in Lemma 1. 

Here again it is crucial to check that  for every A-type p over Di: 

#{ c � 9  C ] A- tp(c/  Di) = p} = # { c � 9  ] A- tp(c/  D~) = pV, }. 

This is done by downwards induction on the size of Par(p). We do the induction 

step in the case p is realizable. Otherwise both sets are empty; here we are using 

fact (3): p is realizable ..r--~. pP' is realizable. 

# { c e C  I A- tp (c /Di )  = p} 

= # { c e C I A - t p ( c / O i )  ~ p ,  ll(c) = 11(p)} - ~ [ ~  # { c e C L A - t p ( c / D , )  = q} 
qeExt(p) 

= e # p a r ( p ) -  ~ # { c e C ] A - t p ( c / D ~ )  =qV'} 
qeExt(p) 

= # { c e C L A - t p ( e / D ~ )  ~ ir = ll(PV')} 
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~{ceC l A-tp(c/D~) 
q' eExt(p pi ) 

#{cEC [ A- tp(c/D~) = pP" } 

= q '}  

Here Ext(p) := {q ] q A-type over Di,p ~_ q, ii(q) = Il(p)} and similar Ext(pP'). 

Now we introduce a new set of colours: 11 "+~ = {U~ +1 [ dEC}, where U~ +1 is a 

new unary predicate for every dEC. We define X~ +1 ESym(11 ~+1) (for 1- < i--- n) by 

rrr+~ We let 1/~ (U~ +1)• := ~ dh ~ . := 11 U s and X~ := Xi U X r+l E Sym(11' U {R}) 

We define 11~c C II 1 x -.. • 11r+1 by 

(V1,...,Vr, U~+I)E.~[Icg--~(V1,...,Vr)E~c a n d  dEVj ( l<_j<_r)(inC).  

Il~c is x~-invariant, because Ilc is xi-invariant, because of the definition of xi" r + l  

and because of the property of hi in claim (b) (bEV r b h~ EVXi). 
The colours in 11r+1 are in a natural way interpreted in A: for aEA and dEC 

we define aEU~ +1 r dRa (in C). Now A is a 11'-graph. 

A is IAtcKm-free. Otherwise there would exist al , . . .am E A and 

( V ~ , . . . ,  v,., ~+~ ' U~ ) E11~ such that akRal (for 1 -< k < 1 -< m) and ak E Vj (for 

1 _< k -  < m, 1 _< j < r) and akEU~ +1. But then (V1,...,V~)E11~, dEVj,  akRd. 
This means a l , . . . ,  a,~, d contradicts the IIr of C. 

For 1 < i < n pi is a X~-permorphism. By the lemma for m we find a finite 

i/ '-graph B, B D A, B ~cKm-free and l b . - . ,  f~ E Sym(B), fi D pi, f,  a X~- 
permorphism having the indicated properties. 

Now we consider B just as a tLgraph. The only thing we still have to check is 

that 13 is 11c-Kin+l-free. 

CLAIM: 

(1) I f  a e A  and bEB then aRb ~ bEU~ +1. 

(2) B is lie-Kin+l-free. 

Proof." (1) Because of the extra property 2 of the lemma and as aRb we can 

choose f E ( f l , . . .  ,f~) such that ao := aSEA and bo := bIEA. As aoRbo we have 
bo E U~r~ 1. Let f = f ~ - - - f ~  and aP~"'P;~ : a0; here we are using the extra 

property 3. Now f is a X~: "'" X~:-permorp hism and we also know ah[~ ...h;: = ao 

so (U~+I)X;: "''x;: = U~ +1. Thus because b I = boEUr~ +1 it follows: bEUr~ +I. 

(2) Suppose there exist (V1,.. . ,  Vr) E Ilc and elements a0 , . . . ,  am E B such 

that  akRaz and ak E Yj. W.l.o.g we suppose a := ao E A: Otherwise choose 

f E ( f l , . . . ,  fn}, such that  a0 / E A and choose X' E Sym(S') such that f is a X'- 
! I permorphism and let X = X' Is; now still (VlX,..., V~ x) E ~ and akRa I and 
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f x - ,  ~+ i  k -< m). Thus ,...,V,.,U~ ) Etlc and by (1): (1< a k C Vj . We have (V1 r + l  , ak ~ v a - 

we get a contradiction to the il'c-Km-freeness of B. I 

The graphs we constructed to prove Theorem 2 are all of the form A x F / -  

where F is a big enough finite group generated by n distinguished elements 

q ' l , . - . ,  %-  In fact, to prove (EP) for the Km-free graphs it is equivalent - -  

given A, p l , . . .  ,Pn--  to finding a finite extending Kin-free graph B and auto- 

morphisms f l , . . . ,  fn extending the Pi and to find such a group F such that  

B = A x F/=__ is K,~-free, a ~ (a, 1)/= gives an embedding and for each i the 

action of ~/i extends Pi. To see this take an arbitrary solution B, f l , . .  �9 f~, then 

define F = ( f l , . . . ,  fn} C Aut(B).  The mapping p: A • F / -  --+ B defined by 

(a, f ) /= ~ a f is well defined and an embedding i: Km --+ A x F / -  would lead 

to an embedding ip: Km --+ B. Thus also A • F/--  is Kin-free and solves the 

extension problem. Note that  p is a weak homomorphism in the sense below. 

4. A m o r e  g e n e r a l  case  

In this section we are handling a more general case. The theorem we are going 

to prove will imply Theorem 2 which we just proved. But we hope that  it will be 

much easier to understand this general case, after having understood the case of 

the graphs. We will s tart  with some definitions we will need for the statement of 

the theorem. We will restrict attention here to irreflexive structures, even if this 

is not essential, as the final chapter will show. 

Definition: Let S be a relational language. 

1. A structure A is called i r re f lex ive ,  if for every kEw, every k-ary R in S 

and every a l , . . . ,  ak in A, if Ral ... ak holds, then a l , . . . ,  ak are pairwise 

distinct. 

2. By Sk (kEw) we denote the set of k-ary relation symbols in S. 

3. Let L be an S-structure. L is called a l ink s t r u c t u r e ,  if there exists 

a l , . . .  ,ak E L  and R E S  such that  { a l , . . .  ,ak} = L and R a l ' " a k  holds 

in L or if L has just one element. 

4. Let s be a set of link structures, A be an S-structure. A has l ink  t y p e  2 

if for every substructure L C A: if L is a link structure, then there exist 

L ' E  2 such that  L - L' .  

5. Let T, 'A be S-structures, let p: T --+ A be a function, p is called a w e a k  

h o m o m o r p h i s m  (notation: p: T ~ w  A) if for every k E w, R E Sk and 

Sl , . . .  , skeT:  if Rs l . . . Sk  (in T) then Rs~.. .  s~ (in A). 
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6. Let ~ be a set of finite S-structures. Let A be an S-structure. We say A is 

J - f r e e  or A weakly avoids ~:, if there does not exist T E ~  and p: T -~w A. 

. Suppose s is a set of link structures and J is a set of finite S-structures, 

then 3~g~ will be thc class of all finite S-structures A, which are ~-free 

and of link type s and ~ will denote all irreflexive S-structures, which 

are J-free. 

8. T is a p a c k e d  structure, if for every tl, t2 ET  there exists a link-structure 

L C T with t l , t2EL. 

Examples: 1. If s contains for every irreflexive link structure an isomorphic 

copy, then for every S-structure B: B is irreflcxive iff B has link type s 

2. Let R be binary, S = {R}. If we let s = {K1,K2}, where K1 is just one 

point a n d / ( 2  is the graph with two points and an edge between them, then B is 

a graph iff B has link type s 

3. Now we le.t T2 be the structure consisting of two points a, b and xRy holds in 

T2 iff x = a and y -- b. B is a d i r e c t e d  g r a p h  iff B is of link type s = {K1,/ '2 }. 

PROPOSITION 4: If T is packed and A is irreflexive and p: T -~w A, then p is 

injective. 

If ~ is a family of packed structures then ~ (and also ~ )  has the f r ee  

a m a l g a m a t i o n  p r o p e r t y  (lAP). By this we mean: IrA, B, C E ~ U { @ } ,  A C/3 ,  

A C C then B *A CEJ~Td U {0}. 
Here B*AC is the f ree  a m a l g a m  of B and G' over A. To define it, first suppose 

that  C C/B = A (by changing C to an isomorphic copy). Now the underlying 

domain of B *A C is just B U C and a relation P ~  holds in B *A G' iff it holds in 

B (and dE B) or in C. Note that  we allow the common part  to be empty. The 

proof of the proposition is easy. 

THEOREM 5: Let S be a finite relational language. Let ~ be a set of finite 

irreflexive packed S-structures. Let s be a set of irreflexive link structures. Then 

Yts has (EP), the extension property for partial isomorphisms. 

Definition: Let X be an arity-preserving permutation of S. For any S-structure 

T we define T x to be the S-structure with the same underlying domain as T, but 

for R E S  (R k-ary) we define: Ral . .  "ak holds in T x iff RX-Xax ...  ak holds in T. 

We say that  a family ~ of S-structures is i n v a r i a n t  under X, if T E ~  *=* T x E~. 

Now we formulate the permorphism version of Theorem 5 
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LEMMA 6: Let S be a finite relational language and let X1, . . . ,Xn be arity 

preserving permutations of S. Let ~ be a finite family of finite irreflexive packed 

S-structures invariant under Xi (for 1 <_ i < n). Let A E A~ be finite. Let P l , . . . ,  Pn 

be partial mappings on A, Pi a Xi-permorphism. 

There exist a finite S-structure B E Y~, A C B and f l , . . . ,  f,~ bijections on 

B, f~ D pi, such that fi is a Xi-permorphism. B has the additional properties 

mentioned in Lemma 1. 

From the lemma follows the theorem: 

Let A E R ~  and P l , . . . ,  Pn be given. 

1. Suppose first that E is finite. Let each )/i be the identity and apply the 

lemma in this situation. We only have to check that the resulting structure B is 

automatically of link type ~. This follows from the additional property 1 and 2. 

In fact suppose L C B is a link structure. There exists f E  ( f l , . . . ,  fn) such that  

L S C A. Because A has link type s there exists L~E s such that  L ~- L I ~ U.  

2. Suppose now that  for every T E E and every substructure T ~ C T, T r is 

packed. Let m be the size of A. Let Em+l be a finite set containing for every 

packed S-structure of size m + 1 exactly one isomorphic copy. Suppose further 

that  E contains only finitely many structures of size less than m + 1 (by throwing 

away isomorphic copies). Let E' :-- { T E ~  [ #T  < m} U Em+l. Then A E A ~  and 

we can apply the first case to get B E A ~  solving the extension problem. But 

B is automatically E-free. It does not contain any packed substructure of size 

m + 1 so it does not (weakly) contain any structure T E E  with # T  > m. 

3. We do the general case by a trick. Let R be a new binary predicate and 

define S* := S U {R}. For an S-structure C we define C* to be the expansion of 

C where for b, cEC: bRc ~ b ~ c. Let 

E* = {T* I TEE} and ~1" : -  {L C A* I L a link structure}. 

By case 2 we find BEA~,a ,  A* C B, and we only have to show that  B {SEAea. 

If L c B such that  L IS is a link structure then L ---- L' E s so L ~- L' C A*. 

Thus L IS - L' IS c A. But A has link type s so L IS - L' IS ~ L " E s  

Suppose now there exists T E a  and p: T + w  B IS (note id: B IS --+w B). As 

B is irreflexive p is injective. We want to prove that p is a map T* --+w B, to get 

a contradiction. For this suppose tl,  t2 ET* and Rtlt2. We have to show Rtl;t~. 

Because T is packed there is P E S and t E T, t l ,  t2 appear in t, such that  P t  

holds. Thus PtP holds in B. Consider the substructure (tP} of B. It is a link 

structure. So it is isomorphic to a substructure of A*. Thus for any two distinct 

elements t, t' of {~,  Rtt  ~ holds. In particular, as p is injective, Rt~t~ holds. 
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Proof of the lemma: The proof will be similar to the proof for the graphs in 

Section 3. We only point out the main differences. It goes by induction on the 

maximal size of structures in ~. The case that this size is one is as easy as the 

corresponding case for the graphs. So let us suppose that the maximal size of the 

structures in ~ is m + 1 > 1. We need to change the notion of A-type slightly: 

Definition: 

1. A A - t y p e  over A is a collection of formulae of the form 

Ral ..-ak,-lXak . . . .  ak-1, where k _> 1 and R E Sk and a l , . . .  , ak - i  are 

pairwise distinct elements of A. The notions about A-types in Section 2 

like A-tp(c /A)  and p [Di and pP' extend naturally to this notion of A- 

type. If p is a A-type over A we define Par(p) := {a E A I there exists a 

formula TEp in which a appears}. 

2. Let p be a A-type over A and let A0 :=Par(p). Suppose A0 C B. We 

denote by B + p  the structure which we get by adding just one point Cp to 

B having exactly type p. So B + p  = B U {Cp}, CpffB, A-tp(cp/B) = p. 
Note that B + p is irreflexive. 

3. Let p be a A-type, and A0 =Par(p). p is called rea l i zab le  iff A0 +pE~;~. 

The facts about realizability in this context: 

(0) I f p  is realizable and Ao C B and BEJ~;~, then B +pEN;~. 

(1) If p C q and q is realizable, then so is p. 

(2) If A C CE.q~, then for every cEC A-tp(c/A) is realizable. In particular, 

for every aEA A-tp(a/A) is realizable. 

(3) I f p  is a type over A and Par(p) C Di (for some i with 1 <- i <~ n), then 

p is realizable r pv, is realizable. 

It is here (in Fact (0), which says that realizable types are indeed realizable) 

where we use that the structures in ~ are packed. 

Proof: 

(0) It is Ao + p E ~  and B E ~  so by (fAP) B + p - ~  (Ao +p) *Ao B E ~ .  
(1) Note that  if p C q then Par(p) + p --~w Par(q) + q. 

(2) Use that  for p = A- tp(c/A): A + p -~w C. 
(3) Observe that  (Par(p) +p)•  ~Par( /~ ' )  +pP~ and use that ~ is xi-invariant. 

Now the crucial claim in this proof reads as follows: 
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CLAIM: 

(a) There exists an ~-free S-structure C, A C C, and for every t a constant 

at E co such that for every E c A and every A- type  p over A such that 

Par(p) = E: 

c#E i f  p is realizable, 
#{cEC I A - t p ( c / E )  = p} = 0 otherwise. 

(b) There exist bijections h i , . . . ,  hn E Sym(C), hi D Pi such that for every i 

(1 < i < n) and every bEG: A-tp(bh~/D~) -- (A- tp (b /Di ) )  p'. 

The proof of (a) is as in the case of the graphs. It works because adding a new 

point of exactly type p (where Par(p) -- E) does not change the number of points 

d with A- tp (d /E ' )  = p' for any type p' with Par(if) = E' ,  provided # E '  > # E  

and ff  r p. So as in Section 3 we can work our way downwards. Here we use 

also fact 0; the fact insures that  the constructed structure is still ~-free. 

Also, the proof of (b) goes exactly along the lines of Section 3. If p is a A-type 

over Di and Par(p) = E, then 

{ c l A - t p ( c / D i ) = p } = { c l A - t p ( c / E ) = p } -  U { c l A - t p ( c / D i ) : q } ,  
qeExt(p) 

where Ext(p) -- {q A-type over Di [ q IE = p,p C q,p 7 ~ q}. It follows that  

#{c I A- tp(c /D~)  = p} = #{c [ A-tp(c /D~)  : pP'}. 

With the help of this claim we now change the class of structures we want to 

avoid and then use induction. 

Definition: 

�9 Let R E ~ (k > 1) and C be the S-structure of the claim. Suppose 

1-< k' < k and c E C, then Re k' will be a ( k -  1)-ary relation sym- 
k' bol, and the natural interpretation on A will be R c b l . - .  bk-1 holds iff 

Rbl . . . bk,-lCbk . . . .  bk-1 holds in C. 

�9 Let S' := SU {R~' [ k E w ,  k > 1, R E S k ,  1 < k' < k, cEC}.  Define X~ on 

(R • We can consider A in a natural S' by X~ IS : Xi and (R~') • : :  , _  jch,. 

way as an S'-structure. 

For T E ~ ,  #T > 2, t E T  and c E C  we expand the S-structure T - {t} to 

an S'-structure called Ttc according to the clause: 

k I 
T~ ~ R d t l " "  t k - I  ~ d = c and T ~ R t l . . .  t k , - l t t k  . . . .  tk_l .  
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�9 We let ~' := { T E ~ I # T  = 1} U {Tt c ITEm,  #T>_ 2, tET ,  cEC,  for every 

RESI :  T ~ Rt  ~ C ~ Rc}; note that ~ contains only packed structures. 

CLAIM: 

(1) Pi is a X~-permorphism (1 <- i <- n), 

(2) ~' is x~-invariant (1 < i <_ n). 

(3) A is ~'-free. 

Proof." (1) follows directly from the properties of the hi (see (b) of previous 

claim)�9 

(2) If Tt ~ E ~' then also (T[)X~ = (TX')~ ~' E ~'. For this suppose R E $1 and 

T x' ~ Rt. Now TtCE~ ' and T ~ R X ~ t  ~ C ~ RXT~c ~ R X ~ x E A - t p ( c / D ~ )  

RxEA-tp(ch~ /D~) ~ C ~ Rc h~. 

(3) Suppose Tt c E ~ and i: Tt c ~ w  A. This leads to a weak homomorphism 

i': T --+w C, where i' IT - {t} = i and i'(t) = c. Here we are using that  T is 

irreflexive. This contradicts C E ~ .  

By induction we can apply the lemma in this situation and get an ~-free S ~- 

structure B, B D A, f l , . . . ,  fn E Sym(B), such that fi is a X~-permorphism. B 

satisfies the additional properties mentioned in Lemma 1 for the language S ~, 

thus afortiori  for the language S. 

So the only thing that still needs checking is that  B is ~-free. Again we need 
that  in a certain sense B looks locally like A: 

CLAIM: 

(1) I l k  > 1, RESk ,  1 < k' < k, a EA  and b l , . . .  , b k - l E B ,  then 

Rbl . ' .  bk,-labk . . . .  bk-1 ~ Rka'bl " " " bk-1. 

(2) B is ~-free. 

Proof: (1) By the extra property 2 there exists f E ( f l , . . . ,  fn) such that  a S E 

A and b{ E A for all i. Using the extra property 3 let f = f~:l . . ,  f i t  and 

a p;~ ""P;: : a I so also ah~'"h~: ~ - -  aS . f is a X' = (X~1)~1 "'" (X~,)~t-permorp hism 

and (Rk') x' (R x~k' where X' = , J j ,  X = IS. Thus Rbl . . .bk ,_ labk  . . . .  bk-1 =v 

�9 V k ~ - l ~ "  ~k  ~ " k ] a S  1 "  ~,"~a ] ~ 1 "  
k t 

R a bl " " b k - 1 .  

(2) We suppose there exist T E ~ and p: T --+w B. Because of the ~'-freeness 

of B we have #T > 2. Pick tET .  We can suppose that tPEA: Otherwise choose 

f E ( f l , . . . ,  f,~) such that (tP) ! E A and choose X E ~ 1 , . . . ,  Xn) such that  f is a 
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x-permorphism. Now p. f induces a weak homomorphism T x -~w  B with t pf E A 

and we still have T X E 3 .  

Let t p = a E A .  We haveTt  ~ E 3 ' .  Consider p' -- p I T _ { t } .  We want to 

show that  p': Tt ~ -+w B to get a contradiction to the 3'-freeness of B.  p' clearly 

preserves S-relations so let R E Sk,  k > 1, 1 < k t < k, c E C and t l , . . .  , t k - 1  E 
k' T -  {t} such that  T~ ~ R e t l ' " t k - 1 .  So a = c and R t l . . . t k , _ l t t k  . . . .  t k -1 .  

p, t p, pl 
Because p is a weak homomorphism R t  1 . . .  tP'k -~1 at~,~ �9 �9 �9 tk_  1. By (1) and a = c: 

k I p '  p~ (Re)tl .. .tk_l. | 

One open question is: does (EP) also hold for classes of structures which avoid 

a given family of packed structures in a stronger sense? 

De~nit ion: Let A be an S-structure and 3 a family of packed S-structures. We 

say A avoids  3 (as substructures) iff there does not exist T E 3 and an embedding 

p: T~-+ A.  

If 3 is any family of finite packed structures, does (EP) hold for the class of 

structures avoiding 3? 

The only point in the proof where we used weak homomorphism as opposed 

to embeddings, was the very last claim we proved. If we would be able to find 

extending structures B which in a stronger sense would locally look like A (i.e. 

also the reverse of the implication in part (1) of the claim holds), then we would 

be able to replace weak homomorphisms by embeddings. 

Let us give a bound for the structure B satisfying the conclusion in Lemma 6 

(or Theorem 5). As in Section 2 it is an iterated exponential function. For this 

we assume 3 to be finite and we let c := #A and t :=sup{#T ] T E 3} >- 2 

(if 3 is infinite we would need t := (c + 1)). We suppose the maximal arity 

of symbols in S is r > 2 and that S contains lj many j -ary  symbols. We let 

p2(x)  = l lX + 2/2x 2 + - . .  + r l rx  r. 

CLAIM: W e  can/~nd B with #B< i t exp (2 r+ t -3 ,  2p2(c)) satisfying the conclusion 

in Lemma 6. 

We do not give the straightforward but  tedious proof here. We only indicate 

the reason for the different form of the polynomial compared to the formula in 

Section 2. The notion of A-types is different compared to Section 2 and the 

number of A-types over A equals 2 ll+212c+'''+rl~c~-l. In the construction of the 

structure C we have to iterate a certain type realizing step c times. We can 

bound C by c .  (2 l '+ ' ' '+lr~-l)c  = c2P2(~). The proof of the claim is by induction 

on t. Note that  for t -- 2 the structure B is automatically 3-free as long as the 
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extra conditions are satisfied. This is because every packed structure of size at 

most 2 is a link structure. 

5. T h e  smal l  i ndex  p r o p e r t y  

In [HHLS] Hodges, Hodkinson, Lascar and Shelah showed how the (EP) for the 

class of graphs can be used to prove the small index property for the random 

graph. This proof readily extends to our cases. We do not want to repeat the 

complete proof here, but for the convenience of the reader we want to indicate 

how a property like (EP) is useful to understand the automorphism group of the 

"generic countable structure" of this class. Most of the material up to Theorem 11 

is (partly implicitly) contained in [HHLS]. Here we are only looking at the special 

case of homogeneous w-categorical structures. Throughout this section S is a 

finite language. 

The idea to look at a generic automorphism can be found in [L] and IT]. The 

underlying idea of this presentation is based on the introduction in [Hr]. 

Definition: Let 5 l ~  be a class like in Theorem 5. J ~  has the amalgamation 

property (AP). (The (AP) here includes the case --sometimes known as joint 

embedding proper ty - -  where the common part is empty.) There exists uniquely 

up to isomorphism a countable structure M called the gene r i c  s t r u c t u r e  for 

~ ; I  having the following properties: 

�9 Every finitely generated substructure of M belongs to ~ .  

�9 For A c B finite structures in ~ and i: A ~ M there exists j:  B "-~ M 

j extending i. Here again we allow A = q). 

Such a structure exists for a class 5l, if ~ is a class of finite S-structures having 

the (AP), and which is closed under isomorphisms and substructures. ~ r t h e r -  

more M is always homogeneous. See [C] section 2.6 or [Fr], also for the definition 

of the amalgamation property. 

In this paper we always want to assume that the classes we consider are closed 

under isomorphisms and substructures and we exclude the uninteresting case that  

there are only finitely many structures up to isomorphism in ~. 

If M is a countable structure we equip G = Aut(M) with the topology of 

pointwise convergence. G is a polish group, as is G n equipped with the product 

topology. So we can talk about comeager sets. See the introduction in [KM] for 

an introduction to these topological groups. 
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(gl, �9 - �9 g,~) EG n is called local ly finite,  if for every a E M  the orbit of a under 

(q l , . . . ,  gn) is finite. With respect to the automorphism group (EP) says exactly 

that  a generic n-tuple of automorphisms is locally finite (this proposition was 

probably known to Hrushovski, see the introduction of [Hr]): 

PROPOSITION 7: Let ~ be a class of finite S-structures having (AP). Let M 

be the generic structure for ~. Then ~ has (EP) iff {(gl , . . .  ,gn) E Aut(M) ~ I 

(g l , . . - ,  gn) locally finite} is comeager in Aut(M) ~. 

Proof: " ~ " :  Suppose that  {(gl, . . . ,g,~) E Aut(M) n I (g l , . . . , gn )  locally finite} 

is comeager, thus dense in G ~. Take A E Y~ and P l , . . - ,Pn  partial isomorphisms 

on A. Embedding A into M we can suppose A C M. The set {(gl , . . .  ,g,~) I Pi C 

gi(1 <- i -< n)} is by definition of the topology an open set of G ~. It is not empty 

because of the homogeneity of M. So we find (g l , . . .  ,gn), Pi C gi, such that  

( g l , . . . ,  9~) is locally finite. Take B to be the union of all the orbits of elements 

of A under (ql , . . . ,  gn). Then B solves the extension problem; (EP) holds for R. 

" ~ " :  We prove that  for every aE M the set {(gl , - . . ,gn)  [ a (gl ..... g~) finite} 

is open and dense. So take a E M and a non-empty open subset O of G n. By 

definition of the topology we find Pl , . .  �9 pn finite partial isomorphisms on M such 

that  O D {(gl , . . .  ,g,~) ]Pi C gi(1 -< i -< n)} ~ 9. Let A be a finite substructure 

of M containing a and the ranges and domains of the pi. By applying (EP) 

we find a finite structure B C ~, A C B and f l , . . . ,  f~ E Aut(B), pi C fi. By 

the defining property of M we can suppose B C M. By homogeneity of M 

we can extend the fi to automorphisms gi of M. This shows the denseness. 

For the openness, observe that  given (g l , . . . , gn)  such that  B -- a (gl ..... 9~) is 

finite, all n-tuples of automorphisms which look on B like (gl,. - �9 g,~) are also in 

{(gl . . . .  , gn) l a (g ...... g~) finite}. I 

In the sequel we want to describe more precisely what in our cases a generic 

tuple of automorphisms looks like. 

Definition: 1. Let ~ be a class of S-structures. By S § denote S U { h l , . . . ,  ha}, 

where h i , . .  �9 h~ are new unary function symbols. By J~+~ we denote the follow- 

ing class of S+~-structures: 

{(A, h , - . . ,  fn) I A e ~ ,  f~ eAut(A),  A finite}. 

2. If ~+~ has the (AP) then we define M +n to be the generic countable model 

of ~+~. M +~ = (M, g l , . . . ,  g~), where g~ is the interpretation of hi in M +n. By 

definition of the generic model (g l , . . . ,  gu) is locally finite. 
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PROPOSITION 8: f f  J~ has the free amalgamation property then so has y~+n. 

PROPOSITION 9: 

(a) Suppose Y~ has the free amalgamation property. Denote by M the generic 

countable structure of this class and by M +n the generic structure o f ~  +n. 

Then M +~ IS ~- M. 
(b) Suppose Y~ has (AP) and (EP) and Y~+~ has (AP). Then M +~ IS ~- M. 

(a) This proposition is not as obvious as it might look at first glance. We 

have to show, that for A C M +~ IS and A C B E ~ there exists an embedding 

i : /3  ~-+ M, i [A = id IA. We can suppose A to be closed under (ql, . . .  ,g~). Let 

g~ := gi IA for every i. We take C := B x (g~,... ,gin)~-, where (b,g)=_(b*,g*) 

iffb, b * C A a n d b  g = (b*) g" and e m b e d B i n t o C v i a b ~ +  (b, 1 ) / - .  For R E S  

r-ary and Cl , . . . ,  cr E C we define RCl...c~ iff there exists g E (g~,... ,g~) and 

a l , . . . , a r  C A such that R a l . . . a r  and Cl -- (al,g) and . . .  and cr = (at,g). 

We define f/ on C by ((b, g)/-)d* :_- (b, ggi) / - .  Now (C, f l , . . . ,  fn) is in J~+'L 

For this note that  C is nothing else but a free amalgam of (twisted) copies of 

B over A. Thus there is j ' :  (C, f l , . . . ,  f,~) ~-+ M +'~ with j '  [A = id IA and 

J = J' IB: B ~-~ M +~ IS with j IA = id IA. Note the similarity of this relatively 

easy construction of C and constructions of the form A x F / -  in earlier chapters. 

(b) has the same prooL Just take for (C, f l , . - . ,  fn) the structure you get by 

applying (EP) to B and g l [ A , . . . ,  g~ IA. | 

Side remark: It is a nice and not so easy exercise to prove that this proposition 

also holds for the class ~ of all finite tournaments. (Use that the automorphism 

group of a tournament is odd, and that  a directed graph, with a group of odd 

order acting on it, can be completed to a tournament such that the group still 

acts as automorphisms on this tournament.) 

Definition: Let ~ be a class of finite S-structures such that J~ and ~+'~ have 

(AP). Let M be the generic countable model of ~. Let (gl ,- . .  ,g,~) be a tuple 

of automorphisms. (g l , . . . , gn)  is called Fra'iss~-generic if (M, g l , . . . , g n )  is 

isomorphic to the generic model of ~+n. 

Note that  { (g l , . . . ,  g,~) I (g l , - . . ,  gn) is Fra'iss6-generic} is an orbit in (Aut M) n 

(under the action of AutM on (Aut M) n by conjugation). The next proposition 

shows that  under certain circumstances it is a comeager orbit (and therefore the 

only comeager orbit). 

PROPOSITION 10 ([HHLS]): Let Y~ be a class of finite S-structures having (AP) 

and (EP). Suppose further that j~+n has (AP). Then {(gl , . -- ,gn) I (g l , . . .  ,9n) 

is Fra~ssd-generic} is comeager in Aut(M)% 
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Thus in our cases a generic (in the sense of Baire Category) tuple of 

automorphisms is Fraiss6-generic. 

The proof of the proposition is fairly routine. Transform "(gl , . . . ,gn)  is 

Fraiss&generic" into countably many open dense conditions corresponding to 

the countably many conditions by which the generic structure M +n is defined. 

You find this proposition in a different notation and context in [HHLS] 

(Theorem 2.9). In their terminology the proposition implies that M has "ample 

generic automorphisms". | 

THEOREM 11 ([HHLS]): Let ~ be a c/ass of finite S-structures having (AP) and 

(EP). Suppose further that 5t +n has (AP) for all n with 1 <_ n < w. Let M be 

the generic structure of 5t. Then M has the small index property. 

Here we say a countable structure M has the small index proper ty  (SIP), if 

for every subgroup H of G -- Aut(M), if [G: H] < 2 ~' then H is open. See [HHLS] 

and [KM] for more information about the small index property and sections 4 and 

5 of [HHLS] for a proof of the statement "if M has ample generic automorphisms 

then it has the (SIP)". | 

Theorem 11 is only implicitly contained in [HHLS], but one can find it more 

explicitly in a preliminary version of that paper. 

COROLLARY 12: 

(1) Let ~ be any set of finite packed irreftexive S-structures, and s be a set of 

irreflexive link-structures. Then M ~ ,  the generic model of ~ ,  has the 

(SIP). 

(2) Let m > 1. The generic countable Kin-free graph has the (SIP). 

Proof: By Theorem 5 the classes in question have (EP) and by Proposition 4 they 

have the free amalgamation property, and by Proposition 8 also the corresponding 

classes J~+'~ have (AP). Thus Theorem 11 can be applied. | 

Here we are especially interested in certain classes of digraphs, which have been 

introduced by Henson, to prove that there are 2 ~' many different w-categorical 

theories of directed graphs ([Hen]). Also Peretyat'kin defined 2 ~ many different 

w-categorical theories in the language consisting of just one binary predicate 

([P]), but we are not able to prove the (SIP) for these structures. 

Let S = {R}. We will look at directed graphs, so instead of writing aRb 

we will also write a --+ b; directed graphs are S-structures having link type 

1~2 = {.,. --+ -}. A t o u r n a m e n t  is a packed directed graph, i.e. an irrefiexive 

S-structure A, such that for a, b E A (a ~- b) exactly one of aRb and bRa holds. 
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The directed graphs Henson introduced are the generic graphs M ~  of classes 

~ ,  where ~ is an infinite family of tournaments. Henson proved that there 

are 2 ~ many non-isomorphic graphs of the form Mn~. 

COROLLARY 13: 

(1) Let ~ be a possibly infinite family of tournaments. Then Yr has (EP). 

(2) The generic structure Mr ~ of the above class has the (SIP). 

(3) There are 2 ~ many non-isomorphic w-categorical directed graphs having 

the (SIP). 

(4) There are 2 ~ many non-isomorphic automorphism groups of w-categorical 

directed graphs having the (SIP). 

Proof: (1) and (2) are direct consequences of Theorem 5 and Corollary 12, 

respectively. 

(3) follows directly from (2) and the fact that there are 2 ~ many non-isomorphic 

directed graphs of type Y[n2~, which is proved in [Hen]. 

(4) follows from (3) if you take into account that two w-categorical 

structures have isomorphic automorphism group as topological groups if[ they 

are bi-interpretable in each other (see [AZ]). Use further that in one particular 

directed graph, there are only countably many different directed graphs inter- 

pretable. So the equivalence classes under the equivalence relation "bi- 

interpretability" on non-isomorphic directed graphs are countable. 

Furthermore, observe that for structures M, M' having the (SIP) AutM is 

isomorphic to AutM ~ as a topological group iff they are isomorphic as groups. 

This is because then the topology can completely be defined from the pure group 

(not using the operation on M): A subset is open iff it is the union of cosets of 

subgroups of G having at most countable index. I 

6. F ina l  r e m a r k s  

One can hardly expect (EP) to hold for a class ~, if (AP) does not hold for ~. 

In fact, if you extend a partial isomorphism p: D --+ D I, D, D I C A E ~, to an 

automorphism fEAut(B),  with BE~, A C B, then you solve the amalgamation 

problem id: D r A, p: D ~-~ A (via f IA: A r B, id: A r B). 

Also the joint embedding property together with (EP) implies (AP): Let 

D, B, C E ~, D C B, D C C. By the joint embedding property there exists 

A E ~, B C A, j: C ~4 A. Now j ID is a partial isomorphism on A. By (EP) 
there exists E E l ,  A C E and fEAut (B)  extending j ID. Now j f - l :  C ~ E 

and j r - 1  ID = id ID. This solves the amalgamation problem. 
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Having this remark in mind the restriction in Theorem 4 on the family ~ to 

consist of packed structures looks quite natural. It is the restriction needed to 

ensure that  (AP) holds for the class. In fact we have the following: 

LEMMA 14: Let S be a finite relational language. Let ~[ be a set of finite 

structures. Sl~ satisfies (AP) iff there exists a set of packed structures 3' such 

that f~?i = ~ -  

Proof: Let us first remark that  ~ has (AP) iff ~ has (lAP). For suppose tl~ 

has (AP). Let A, B, C E J~  U {0} A C B, A C C. By (AP) there exists D E ~l~ 

and embeddings i1: B ~ D, i2: C ~ D with i l [ A  = i2 [A. But this leads in a 

natural way to a weak homomorphism which we like to call il *A i2: B *A C -~w 

D. [In fact if you like to think in terms of the category of S-structures, with 

weak homomorphisms as morphisms, then B *A C is the fibered co-product (of 

A r B and A ~-+ C) in that  category, and is therefore uniquely determined up 

to isomorphism by this property.] But from B *A C ~ w  D and D J-free follows 

B *A C 3-free. 

We say ~ is good ,  if for every T E ~  and every finite S-structure T ', if T --+w T ~ 

(by this we mean more formally: if there exists a weak homomorphism h: T -~w 

T I) then T ' E 3 .  

CLAIM: If  ~ is good and ~ satisfies (AP), then for every T E ~ there exists a 

packed T' E ~ such that T p --+w T. 

Proof of the Claim: Let T E 3 be a counterexample minimal in size. As there 

does not exist a packed T' E 3 such that T ~ --~w T, T is not packed. T being 

not packed means exactly that  we can write T ~ 371 *To T2 with #T1 < # T  and 

#T2 < #T.  As Tr and as Y~ has the (AP), T i r  for i = 1 or i = 2. This 

means there exists T'E3 and p: T' -~w T~. As 3 is good T~E3. But as Ti --+w T 

there cannot be a packed structure T ' E  3 such that  T' --+w T~. Ti contradicts 

the  minimality assumption on T. 

From the claim follows the Lemma: Let ~ be a family of structures such that  s 

has the (AP). Let 5'  be the family (well, formally it is a class) of finite structures 

T' such that  there exists T E ~ with T ~ w  T'. We have ~ = ~ .  If we let 3"  

be the family of elements of ~' which are packed, then we have R~ = R~,, by the 

claim. I 

There is also a variant of (EP) available in classes of structures, which fail to 

have the amalgamation property: 
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Definition: ~ has the weak extension proper ty  (WEP), if for every finite 

AE~ and partial isomorphisms Pl,. �9 �9 ,P~ on A, if there exists a possibly infinite 

structure ME~,  A C M and gl , . . .  ,gn EAut(M) such that Pi C gi, then there 

exists a finite structure BEJ~, A c B and f l , . - - ,  f~EAut(B) such that pi C fi. 

There is a joint paper with Daniel Lascar ([HL]) where we are going to prove 

the (WEP) for several classes ~. These properties will be strongly connected to 

properties of the free groups in finitely many generators. In fact the results in 

that paper will be stronger than Theorem 5. The methods used there will be 

quite different from the methods in this paper, and the proof of the stronger 

theorem will be much longer and more complicated. 

Remark: Let us point out that in the context of this paper the weak extension 

property is not weaker than the extension property: 

Let ~ be a class of structures having the amalgamation property. Also suppose 

that ~ contains the generic countable structure, the "Fra'fss~-limit" of its finite 

structures. Then ~ has the (WEP) iff ~ has the (EP). 

Proof." Let A E ~ be finite, let P l , - . . ,  p,~ be partial isomorphisms on A. We have 

to show that there exists ME~,  A c M, gl , . . .  ,gn EAut(M), gi ~ Pi. Take M 

to be the generic countable structure and embed A into M. Now Pi extends to 

gi EAut(M) because of the homogeneity of M. 

In [HL] we prove that for a finite family ~ of structures the class ~ has the 

(WEP). The condition on the elements of ~ being packed is no longer necessary. 

In that context it is obvious that working with weak homomorphisms as opposed 

to embeddings is essential: 

Examples: 

The class of total orderings is the class of (R)-structures of link type 

s = ('," ~ "} (see the example at the beginning of Section 4) which 

avoids (as substructures) the structures A2 and C3, where A2 consists of 

2 points with no edge, and C3 consists of 3 points a, b, c where R C3 = 

((a,b), (b,c), (c,a)). As finite orderings allow nontrivial partial isomor- 

phisms but do not allow nontrivial automorphisms and as they are 

embeddable into the homogeneous ordering of the rationals, this class 

does not even satisfy (WEP). 

The class of tournaments is the class of (R}-structures of link type s 

which avoid A2. It is an open question, iff the class of tournaments satisfies 

(WEe). For this class (as it satisfies (AP)) (WEe) is equivalent to (ne). 
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The restriction to irreflexive structures in Section 4 and Section 5 is not 

essential. The theorems also hold without this restriction. 

THEOREM 15: Let ~ be a set of finite packed S-structures. Let 2. be a set of 

link structures. 

(1) ~ has (EP). 

(2) The generic structure Mc~ of the class has the (SIP). 

Proof: It suffices to prove (1), as (2) follows from (1) and Section 5. We use a 

natural method to code arbitrary structures by irreflexive ones: Let R be an r-cry 

relation symbol and let X l , . . . ,  xr be pairwise distinct variables. For every r t < r 

and every formula Rxi l " ' "  xi .  where { i l , . . . ,  it} -- {1 , . . . ,  r '} we introduce a new 

r ' -ary relation symbol R (il ..... it) with the intended meaning: R (il ..... i~)Xl. . .x~, 

iff X l , . . . ,  x~, are pairwise distinct and Rxil  ""xi~.  Let S* be the set of relation 

symbols obtained in this way. We regard every S-structure A as an irreflexive 

S*-structure, which we denote by A* by defining: R (il,''',ir)al . . .  a~, holds in A* 

iff a l , . . . ,  a~, are pairwise distinct and Rai~ . . .  air holds. 

If A has link type s then A* hast link type ~* = {L* I L E ~}. Conversely if 

B is of link type s then there exists a unique S-structure A, such that  A* = B. 

We will suppose that ~ is closed under homomorphic images. By this we 

mean: If T E ~ and h: T --~ T t is a surjective weak homomorphism, then there 

exists T"  E ~ with T"  ~ T r. It is no problem to assume ~ to be closed under 

homomorphic images, as homomorphic images of packed structures are packed, 

and as for h: T --+w T r: If A is T-free, then it is also T~-free. 

We let 5" := {T* I TE~}.  

CLAIM: I r A  is an S-structure, then A is J-free iffA* is ~*-free. 

The difficult direction is "r Suppose A* is ~*-free, but there exist T E 

and h: T --+w A. As ~ is closed by homomorphic images we can assume h to 

be an embedding (we can replace T by the substructure T h of A). We can now 

consider h as a mapping between S*-structures, and we see that  h: T* ~-+ A*. 

This is a contradiction. 

Now we finish the proof of the theorem. We let A E s  and P l , . . .  ,P ,  be par- 

tial isomorphisms of A. Then A* E~c .~ .  and P l , . . .  ,P ,  are partial isomorphisms 

of A*. By Theorem 5 there exists C E Y~.~- A* C C and f l , . . . ,  fn E Aut(C) 

with Pi C fi for every i. Now C is of the form B*, where B E ~ and A c B. 
| 

There is a description of the classes ~ in terms of axioms: Let S be a finite 

relational language. The classes ~c~ (where s is a family of link structures and 
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is a family of finite packed structures) are the classes which are axiomatizable 

by axioms of the following forms: 

�9 Vx~(x) ,  where ~(x) is a quantifier free formula (in one variable). 

�9 V~(R~ --+ ~(~)), where r E w, ~2 = x l " . x T ,  R is r-ary and ~(~) is a 

quantifier free formula. 

�9 ~ y A ~ = I  ~i(y), where k , t  E w, fl = yl ""Yk ,  each ~i(Y) is an atomic 

formula, for every j , j '  with 1 < j < j '  < k there exists i (1 < i < t) such 

that  yj and yj, both appear  in ~i(Y). 

It  is also no problem to allow finitely many constants in the language as tong as 

one insists that  all the domains of the partial isomorphisms in question contain 

all the constants. For simplicity we will not speak about structures of a given 

link type. 

COROLLARY 16: Let S be a finite relational language with constants. Let ~ be 

a family of  finite packed structures each in a sublanguage of  S. Let J~  be the 

class of  ~-free S-structures. J~  has the (EP). Hereby a partial isomorphism p on 

A is an isomorphism between two S-substructures of  A. 

The condition on the partial isomorphisms just means that  for all the constants 

c in the language and every one of the partial isomorphisms p, c (or rather the 

interpretation c A of e in A) is in D(p) and c v = c. 

Proo~ We replace in the language S every constant c by a unary predicate Uc, 

which is intended to hold only for the interpretation of c. We denote this new 

relational language by S*. Every structure A in a sublanguage of S can be 

considered in a natural  way as an S*-structure, which we denote by A*. Hereby 

we interpret relation symbols from S which have not been in the language of A 

by the empty  set, and the same for symbols Uc, where c has not been in the 

language of A. We let ~* = {T* I TE~}.  

Now let A E J~g be finite and P l , . . . ,  P,~ be partial isomorphisms on A. We have 

A*E ~g. .  By Theorem 15 there exists a finite E E - ~ .  and f l , . . . ,  f~ E Aut(E) ,  

such that  A* C E and Pi C fi  for each i. We only have to check that  U E = 

U A" - {c) to conclude that  E = B* for some B E J ~  and to finish the proof. 

But  we can easily suppose that  for every element d E E there exists f E 

( f l , - . - ,  fn) such that  d f E A*. Now if we take dE U E and suppose that  d I E A, 

then d / E U  A and therefore d / = c. But for every f ~ E ( f l , . . .  , fn)  c I '  ---- c as c is 

fixed by every f~. In particular d = c : - '  -- c. I 
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